Find the Permutations
Sorting is one of the most used operations in real life, where Computer Science comes into act. It is
well-known that the lower bound of swap based sorting is nlog(n). It means that the best possiblesorting algorithm will take at least O(nlog(n)) swaps to sort a set of n integers. However, to sort aparticular array of n integers, you can always find a swapping sequence of at most (n − 1) swaps, onceyou know the position of each element in the sorted sequence.For example consider four elements <1 2 3 4>. There are 24 possible permutations and for allelements you know the position in sorted sequence.If the permutation is <2 1 4 3>, it will take minimum 2 swaps to make it sorted. If the sequenceis <2 3 4 1>, at least 3 swaps are required. The sequence <4 2 3 1> requires only 1 and the sequence<1 2 3 4> requires none. In this way, we can find the permutations of N distinct integers which willtake at least K swaps to be sorted.InputEach input consists of two positive integers N (1 ≤ N ≤ 21) and K (0 ≤ K < N) in a single line.Input is terminated by two zeros. There can be at most 250 test cases.OutputFor each of the input, print in a line the number of permutations which will take at least K swaps.Sample Input3 13 03 20 0Sample Output312题意:
给定一个1~n的排序,可以通过一系列的交换变成1,2,…,n, 给定n和k,统计有多少个排列至少需要交换k次才能变成有序的序列。
题解:
每个长度为n循环需要交换n-1次才能将交换到对应的位置,例如1->2,2->4,4->1,(1,2,4)位置上对应值为(2,4,1) 相当于一个长度为3的环逆时针旋转了1格,要变换回来,需要跟原位置交换,因为成环,所以共n-1次 那么对于序列P,有x个循环节,长度为n,就需要交换n-x次 对于f[i][j],表示交换j次能变为1~i的序列的种数 我们找到递推式:f[i][j]=f[i-1][j]+f[i-1][j-1]*(i-1),边界是f[1][0]=1,其余为0 解释:新增的i,如果与自己构成循环,那么循环数和长度都加一,交换数不变,所以是f[i-1][j] 新增的i,如果参加到其他环中,每个数后一种,共i-1种,循环数不变,长度加一,所以是f[i-1][j-1]*(i-1) 例如1->2,2->3,3->1,{2,3,1};将4添加到1后就是1->4,4->2,2->3,3->1,序列为{4,3,1,2};其他同上
#include#include #include #include #include using namespace std ;typedef long long ll;const int N = 105;const int mod = 1e9 + 7;unsigned long long dp[N][N];void init() { for(int i = 1; i <= 21; i++) { dp[i][0] = 1; for(int j = 1; j < i; j++) dp[i][j] = dp[i-1][j] + dp[i-1][j-1] * (i-1); }}int main () { init(); int n,k; while(~scanf("%d%d",&n,&k)) { if(n == 0 && k == 0) break; printf("%llu\n",dp[n][k]); } return 0;}